Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells.
نویسندگان
چکیده
The plasma membrane 5-HT transporter (SERT) is the major protagonist in regulating extracellular 5-HT concentration and constitutes the target of drugs used to treat a host of metabolic and psychiatric disorders. The exact mechanisms sustaining SERT function still remain elusive. The present work exploits the properties of the 1C11 neuroectodermal progenitor, which acquires, upon 4 days of differentiation, a functional SERT within an integrated serotonergic phenotype to investigate regulatory mechanisms involved in SERT onset and functions. We show that poly(A) addition precedes SERT mRNA translation on day 2 of the serotonergic program. The newly translated transporter molecules immediately bind cocaine. Day 4 must be awaited to monitor antidepressant recognition and 5-HT uptake. Because external 5-HT reduces both 5-HT transport and SERT antidepressant binding, we identify 5-HT(2B) receptors as key players in controlling the overall 5-HT transport system. In the absence of external 5-HT, 5-HT(2B) receptor coupling to NO production ensures SERT phosphorylation to basal level and maximal 5-HT uptake. In the presence of 5-HT, the 5-HT(2B) receptor-PKC coupling promotes additional phosphorylations of both SERT and Na(+),K(+)-ATPase alpha-subunit, impairing the electrochemical gradient necessary to 5-HT uptake. SERT hyperphosphorylation also affects antidepressant recognition. Finally, such 5-HT(2B) receptor-mediated control of SERT activity operates in primary neurons from raphe nuclei. Altogether, our data shed new light on the 5-HT-driven post-translational modifications involved in the control of SERT activity.
منابع مشابه
Review of Metabolism, Transport and Role of Serotonin in the Body and the Relation between Serotonin and Diseases
Serotonin (5-hydroxytriptamine), one of the most important neurotransmitters, is synthesized from amino acid L-tryptophan in some neurons located in the central nervous system and intestine enterochromaffin cells . The role of this neurotransmitter is important and involves control of sexual behaviors, morality, sleep, pain, appetite, aggression, cardiovascular function and regulation of gut fu...
متن کاملResponse: Commentary: Chronic SSRI Stimulation of Astrocytic 5-HT2B Receptors Change Multiple Gene Expressions/Editings and Metabolism of Glutamate, Glucose and Glycogen: A Potential Paradigm Shift
It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B...
متن کاملReversal of hippocampal neuronal maturation by serotonergic antidepressants.
Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broa...
متن کاملReceptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.
The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functiona...
متن کاملPrenatal Cocaine Disrupts Serotonin Signaling-Dependent Behaviors: Implications for Sex Differences, Early Stress and Prenatal SSRI Exposure
Prenatal cocaine (PC) exposure negatively impacts the developing nervous system, including numerous changes in serotonergic signaling. Cocaine, a competitive antagonist of the serotonin transporter, similar to selective serotonin reuptake inhibitors (SSRIs), also blocks dopamine and norepinephrine transporters, leaving the direct mechanism through which cocaine disrupts the developing serotonin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2006